44 research outputs found

    Operational large-scale segmentation of imagery based on iterative elimination

    Get PDF
    Image classification and interpretation are greatly aided through the use of image segmentation. Within the field of environmental remote sensing, image segmentation aims to identify regions of unique or dominant ground cover from their attributes such as spectral signature, texture and context. However, many approaches are not scalable for national mapping programmes due to limits in the size of images that can be processed. Therefore, we present a scalable segmentation algorithm, which is seeded using k-means and provides support for a minimum mapping unit through an innovative iterative elimination process. The algorithm has also been demonstrated for the segmentation of time series datasets capturing both the intra-image variation and change regions. The quality of the segmentation results was assessed by comparison with reference segments along with statistics on the inter- and intra-segment spectral variation. The technique is computationally scalable and is being actively used within the national land cover mapping programme for New Zealand. Additionally, 30-m continental mosaics of Landsat and ALOS-PALSAR have been segmented for Australia in support of national forest height and cover mapping. The algorithm has also been made freely available within the open source Remote Sensing and GIS software Library (RSGISLib)

    A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR and Landsat Sensor Data

    Get PDF
    Australia has historically used structural descriptors of height and cover to characterize, differentiate, and map the distribution of woody vegetation across the continent but no national satellite-based structural classification has been available. In this study, we present a new 30-m spatial resolution reference map of Australian forest and woodland structure (height and cover), with this generated by integrating Landsat Thematic Mapper (TM) and Enhanced TM, Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) and Ice, Cloud, and land Elevation (ICESat),and Geoscience Laser Altimeter System (GLAS) data. ALOS PALSAR and Landsat-derived Foliage Projective Cover (FPC) were used to segment and classify the Australian landscape. Then, from intersecting ICESat waveform data, vertical foliage profiles and height metrics (e.g., 95% percentile height, mean height and the height to maximum vegetation density) were extracted for each of the classes generated. Within each class, and for selected areas, the variability in ICESat profiles was found to be similar with differences between segments of the same class attributed largely to clearance or disturbance events. ICESat metrics and profiles were then assigned to all remaining segments across Australia with the same class allocation. Validation against airborne LiDAR for a range of forest structural types indicated a high degree of correspondence in estimated height measures. On this basis, a map of vegetation height was generated at a national level and was combined with estimates of cover to produce a revised structural classification based on the scheme of the Australian National Vegetation Information System (NVIS). The benefits of integrating the three datasets for segmenting and classifying the landscape and retrieving biophysical attributes was highlighted with this leading the way for future mapping using ALOS-2 PALSAR-2, Landsat/Sentinel-2, Global Ecosystem Dynamics Investigation (GEDI), and ICESat-2 LiDAR data. The ability to map across large areas provides considerable benefits for quantifying carbon dynamics and informing on biodiversity metrics

    Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations

    Get PDF
    Forest structure is a useful proxy for carbon stocks, ecosystem function and species diversity, but it is not well characterised globally. However, Earth observing sensors, operating in various modes, can provide information on different components of forests enabling improved understanding of their structure and variations thereof. The Ice, Cloud and Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS), providing LiDAR footprints from 2003 to 2009 with close to global coverage, can be used to capture elements of forest structure. Here, we evaluate a simple allometric model that relates global forest canopy height (RH100) and canopy density measurements to explain spatial patterns of forest structural properties. The GLA14 data product (version 34) was applied across subdivisions of the World Wildlife Federation ecoregions and their statistical properties were investigated. The allometric model was found to correspond to the ICESat GLAS metrics (median mean squared error, MSE: 0.028; inter-quartile range of MSE: 0.022–0.035). The relationship between canopy height and density was found to vary across biomes, realms and ecoregions, with denser forest regions displaying a greater increase in canopy density values with canopy height, compared to sparser or temperate forests. Furthermore, the single parameter of the allometric model corresponded with the maximum canopy density and maximum height values across the globe. The combination of the single parameter of the allometric model, maximum canopy density and maximum canopy height values have potential application in frameworks that target the retrieval of above-ground biomass and can inform on both species and niche diversity, highlighting areas for conservation, and potentially enabling the characterisation of biophysical drivers of forest structure

    Global Mangrove Watch:Updated 2010 Mangrove Forest Extent (v2.5)

    Get PDF
    This study presents an updated global mangrove forest baseline for 2010: Global Mangrove Watch (GMW) v2.5. The previous GMW maps (v2.0) of the mangrove extent are currently considered the most comprehensive available global products, however areas were identified as missing or poorly mapped. Therefore, this study has updated the 2010 baseline map to increase the mapping quality and completeness of the mangrove extent. This revision resulted in an additional 2660 km2 of mangroves being mapped yielding a revised global mangrove extent for 2010 of some 140,260 km2. The overall map accuracy was estimated to be 95.1% with a 95th confidence interval of 93.8–96.5%, as assessed using 50,750 reference points located across 60 globally distributed sites. Of these 60 validation sites, 26 were located in areas that were remapped to produce the v2.5 map and the overall accuracy for these was found to have increased from 82.6% (95th confidence interval: 80.1–84.9) for the v2.0 map to 95.0% (95th confidence interval: 93.7–96.4) for the v2.5 map. Overall, the improved GMW v2.5 map provides a more robust product to support the conservation and sustainable use of mangroves globall

    Fusion approach for remotely sensed mapping of agriculture (FARMA):A scalable open source method for land cover monitoring using data fusion

    Get PDF
    The increasing availability of very-high resolution (VHR; &lt;2 m) imagery has the potential to enable agricultural monitoring at increased resolution and cadence, particularly when used in combination with widely available moderate-resolution imagery. However, scaling limitations exist at the regional level due to big data volumes and processing constraints. Here, we demonstrate the Fusion Approach for Remotely Sensed Mapping of Agriculture (FARMA), using a suite of open source software capable of efficiently characterizing time-series field-scale statistics across large geographical areas at VHR resolution. We provide distinct implementation examples in Vietnam and Senegal to demonstrate the approach using WorldView VHR optical, Sentinel-1 Synthetic Aperture Radar, and Sentinel-2 and Sentinel-3 optical imagery. This distributed software is open source and entirely scalable, enabling large area mapping even with modest computing power. FARMA provides the ability to extract and monitor sub-hectare fields with multisensor raster signals, which previously could only be achieved at scale with large computational resources. Implementing FARMA could enhance predictive yield models by delineating boundaries and tracking productivity of smallholder fields, enabling more precise food security observations in low and lower-middle income countries.</p

    Mapping the multi-decadal mangrove dynamics of the Australian coastline

    Get PDF
    Mangroves globally provide a diverse array of ecosystem services but these are impacted upon by both natural and anthropogenic drivers of change. In Australia, mangroves are protected by law and hence the natural drivers predominate. To determine annual national level changes in mangroves between 1987 and 2016, their extent (by canopy cover type)and dynamics were quantified using dense time-series (nominally every 16 days cloud permitting)of 25 m spatial resolution Landsat sensor data available within Digital Earth Australia (DEA). The potential area that mangroves occupied over this period was established as the union of mangrove maps generated for 1996, 2007–2010 and 2015/16 through the Global Mangrove Watch (GMW). Within this area, the green vegetation fractional cover (GVpc)was retrieved from each available cloud-masked Landsat scene through linear spectral unmixing. The 10th percentile (GVpc10)was then determined for each calendar year by comparing these data in a time-series. The percentage Planimetric Canopy Cover (PCC%)for each Landsat pixel was then estimated using a relationship between GVpc10 and LiDAR-derived PCC% (20%; resolvable at the Landsat resolution)varied from a minima of 10,715 ± 36 km (95% confidence interval)in 1992 to a maxima of 11,388 km ± 38 km (95% CI)in 2010, declining to 11,142 ± 57 km (95% CI)in 2017. In 2010 (maximum extent), the forests were classified as closed canopy (38.8%), open canopy (49.0%)and woodland mangrove (12.2%). The majority of change occurred along the northern Australian coastline and was concentrated in the major gulfs and sounds. The 30 national maps of annual mangrove extent represent a reference dataset, which is publicly available through the Terrestrial Environment Research Network (TERN)landscapes portal. Future efforts are focusing on the routine production of annual mangrove maps beyond 2019 as part of Australia's efforts to monitor the coastal environment
    corecore